第十章 确定性的基石:科学

物质世界由什么构成?以太、物质和能。

——莱恩,1885年[1]

一般人都同意,在过去的50年间,我们对于遗传学基本定律方面的知识,有了极大提高。事实上,我们可以公正地说,在这段时期这方面所取得的进展,比这个领域有史以来所取得的总和更多。

——雷蒙德·珀尔(Raymond Pearl),1913年[2]

就相对论的物理学而言,时空不再是宇宙基本内容的一部分。现在大家都承认它们是结构。

——伯特兰·罗素(Bertrand Russell),1914年[3]

有的时候,人类理解和建构宇宙的整个方式,会在相当短暂的时期内改变,而第一次世界大战之前的几十年,正是这样一个时期。这种转变,在当时还只有很少的国家中极少数人可以理解,乃至可以观察到。有时,甚至在正值转型的知识和创造性活动领域之内,也只有少数人能够了解和观察到。当然,并不是所有的领域都有转变发生,或以同样的方式被改变。比较完整的研究,必须区别那些人们意识到直线前进而非转型(例如医学)的领域与那些已经发生革命的领域(例如物理学);区别那些经过巨变的旧科学与其本身便构成各种革新的新科学(因为它们诞生于我们所探讨的这个时代,例如遗传学);区别那些注定会成为新舆论或正统的科学理论与那些将留在其学科边缘的科学理论(例如心理分析)。它也必须区别经受过挑战,但已成功地重建为大家所接受的理论(例如达尔文学说),与19世纪中期知识传统的若干其他部分——那些除了在较浅易的教科书中可以看到,此外已不见踪影的部分,如开尔文勋爵(Lord Kelvin)的物理学。而它也当然必须区别自然科学和社会科学,在这个时期,像传统的人文科学领域一样,社会科学正日渐与自然科学分离,并造成了一道日甚一日的鸿沟。大半在19世纪被视为“哲学”的学术,似乎正消失在这道鸿沟中。而且,不论我们如何形容这个全球性的表现,它都是真实的。这个时期的知识景观——那些命名为普朗克(Planck)、爱因斯坦和弗洛伊德的高峰,此刻正在浮现,遑论勋伯格和毕加索——显然与1870年聪明的观察家自以为看到的知识景观极不相同。

这个转型可分为两种。在知识上,它意味着不再以建筑师或工程师的方式去理解宇宙:一个尚未完成的建筑,不过为期不远;一个以“事实”为基础的建筑,为因果律和自然律的坚实骨架所维系,用理性和科学方法的可靠工具所建造;一个知识的建构,但也传达了越来越逼真的宇宙客观真理。在洋洋得意的资产阶级世界的观念中,由17世纪承继而来的巨大的静态宇宙结构,加上17世纪以后因延伸到新领域而扩张的结构,不仅产生了永恒感和可预测性,也造成了转型。它产生了演化(至少在与人类有关的事情上,演化可轻易被等同于长期的“进步”)。然而,现在已经崩溃的,正是这种宇宙模型和人类对它的了解方式。

但是,这种崩溃有非常重要的心理因素。在资产阶级世界的知识建构中,古代宗教的力量已从对宇宙的分析中剔除,在这个宇宙内部,超自然和神奇的事物并不存在。而且,除了视宇宙为自然律的产物外,在相关的分析中也几乎不带感情。不过,除了次要的例外情形,知识的宇宙似乎与人类对物质世界的直觉把握(“感官经验”)相吻合,也与人类推理作用直觉的看法相一致。因而,当时仍然可以用机械(撞球式的原子)模型去思考物理和化学。(事实上,在被忽略了一段时期之后,不久将被打碎成较小粒子的原子,这个时期又恢复成物理科学的基本结构单元。)可是,宇宙的新建构却越来越不得不抛弃直觉和“常识”。也可以说,“自然”变得较不自然但更容易理解。事实上,虽然我们今天都根据以新科学革命为基础的技术生活,也与它共存;虽然我们生活其中的世界,其视觉外观已因它而改变,而一般受过教育者的谈论也经常模仿它的概念和词汇,可是甚至到今天,我们还完全不清楚这场革命究竟被一般公众的思想吸收了多少。我们可以说,它是在存在上而非在知识上被接受了。

科学和直觉的分离过程,或许可以用数学这一极端例子予以说明。在19世纪中叶的某一时刻,数学思想的进步,开始不仅造成一些与感官了解的真实世界相冲突的结果(例如非欧几何学),而且也造成震撼数学家的结果——他们像伟大的康托尔(Georg Cantor)一样,发现“我看到,但是我不相信”。[4] 布尔巴基(Bourbaki)所谓的“数学的病理学”于此开始。[5] 在19世纪数学“两个精力充沛的有待研究领域”之一的几何学中,好像各种各样不可思议的现象都出现了,如没有正切(tangent)曲线。但是当时最戏剧性和“不可能”的发展,或许当推康托对于无穷数的探究。在这项探究所造成的世界中,直觉的“较大”和“较小”概念不再适用,而算术的规则不再产生预期的结果。用希尔伯特(Hilbert)的话来说:它是一种令人兴奋的进展,一个新的数学“乐园”,而前卫的数学家拒绝被排斥于这个乐园之外。

一个随后被大多数数学家遵循的解决办法,是将数学从它与真实世界的对应中解放出来,并将它转化为任何假定,只要它具有严格的定义,并且不会自相矛盾。自此以后,数学便断绝了对任何事物的信任,除了游戏规则外。罗素对于重新思考数学基本原则一事贡献极大,这或许是有史以来第一次,数学成了舞台的中心。用罗素的话来说:数学是一门没有任何人知道它在说什么的科目,也没有任何人知道它所说的话里面哪些是真的。[6] 它的基本原则,是借着严格排除任何诉诸直觉的事物而重新加以明确表达。

这种情况造成了巨大的心理困难,也造成了若干的知识困难。虽然从数学形式主义者的观点来说,数学和真实世界的关系是互不相干的,但这种关系的存在却是不可否认的。20世纪“最纯净的”数学,曾一再在真实世界中找到某种对应,而且的确有助于解释这个世界或有助于我们借助科技主宰这个世界。哈代(G. H. Hardy)是一位专门研究数论的纯数学家,他曾骄傲地声称他所做的任何事都没有实用价值。可是,即使是哈代,也曾提出一项实用理论,一项现代人口遗传学的基础理论[所谓的哈代——温伯格定律(Hardy-Weinberg law)]。数学游戏和与之对应的真实世界的结构,其关系的性质为何?这个问题对于数学家的数学能力来说或许是不重要的,但是,事实上即使是许多形式论者,如伟大的希尔伯特,似乎也曾相信一个客观的数学真理,那就是:数学家如何看待他们所运算的数学实体的“性质”或他们的定理的“真实性”并非无关紧要。由法国人庞加莱(Henri Poincaré,1854—1912)发起,荷兰人布劳威尔(L. E. J. Brouwer,1882—1966)领导的“直观论”(intutionism)学派,激烈地排斥形式主义,如果需要,他们甚至不惜放弃许多最杰出的数学推理上的成果,这些简直令人难以置信的成果,曾经引发对数学基础的重新思考,尤其是康托尔在19世纪70年代提出的集合论(set theory),这项理论是在某些人的激烈反对下提出的。这场发生于纯思想尖端领域的战役,其唤起的激情,足以说明借由数学来了解世界的旧日链锁一旦崩溃,将会带来多么深刻的知识和心理危机。